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A Sense of Scale

At web scales...
– Mail: Billions of messages per day
– Search: Billions of searches per day
– Social: Billions of relationships

2
Saturday, August 25, 12



MR Algorithmics Sergei Vassilvitskii

A Sense of Scale

At web scales...
– Mail: Billions of messages per day
– Search: Billions of searches per day
– Social: Billions of relationships

...even the simple questions get hard
– What are the most popular search queries?
– How long is the shortest path between two friends?
– ...
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To Parallelize or Not? 

Distribute the computation
– Hardware is (relatively) cheap
– Plenty of parallel algorithms developed 
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To Parallelize or Not? 

Distribute the computation
– Hardware is (relatively) cheap
– Plenty of parallel algorithms developed 

But parallel programming is hard
– Threaded programs are difficult to test. One successful run is not 

enough
– Threaded programs are difficult to read, because you need to know in 

which thread each piece of code could execute
– Threaded programs are difficult to debug. Hard to repeat the 

conditions to find bugs
– More machines means more breakdowns
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MapReduce

MapReduce makes parallel programming easy
– Tracks the jobs and restarts if needed
– Takes care of data distribution and synchronization

But there’s no free lunch:
– Imposes a structure on the data
– Only allows for certain kinds of parallelism 

6
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MapReduce Setting

Data:
– “Which search queries co-occur?”
– “Which friends to recommend?”
– Data stored on disk or in memory

Computation:
– Many commodity machines

7
Saturday, August 25, 12



MR Algorithmics Sergei Vassilvitskii

MapReduce Basics

Data:
– Represented as <Key, Value> pairs

Example: A Graph is a list of edges
– Key = (u,v)
– Value = edge weight

8

(u,v) wuv
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MapReduce Basics

Data:
– Represented as <Key, Value> pairs

Operations:
– Map: <Key, Value> → List(<Key, Value>)

• Example: Split all of the edges
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(u,v) wuv MAP
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MapReduce Basics

Data:
– Represented as <Key, Value> pairs

Operations:
– Map: <Key, Value> → List(<Key, Value>)
– Shuffle: Aggregate all pairs with the same key
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MapReduce Basics

Data:
– Represented as <Key, Value> pairs

Operations:
– Map: <Key, Value> → List(<Key, Value>)
– Shuffle: Aggregate all pairs with the same key
– Reduce: <Key, List(Value)> → <Key, List(Value)>

• Example: Add values for each key

11
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MapReduce Basics

Data:
– Represented as <Key, Value> pairs

Operations:
– Map: <Key, Value> → List(<Key, Value>)
– Shuffle: Aggregate all pairs with the same key
– Reduce: <Key, List(Value)> → <Key, List(Value)>
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MapReduce (Data View)

13

(u,x) 4

Unordered Data
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MapReduce (Data View)
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MapReduce (Data View)
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MapReduce (Data View)
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MapReduce (Data View)
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Matrix Transpose

Given a sparse matrix in row major order
Output same matrix in column major order
Given:

18

row 1 (col 1, a) (col 2, b)

row 2 (col 2, c) (col 3, d)

row 3 (col 2, e)
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Matrix Transpose

Map:
– Input: <row i, (coli1, vali1), (col_i2, vali2), ... > 
– Output: <coli1, (row i, vali1)>
–              <coli2, (row i, vali2)>
–                             ....
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a b
c d
e

col 1 (row 1, a)row 1 (col 1, a) (col 2, b)

row 2 (col 2, c) (col 3, d)

row 3 (col 2, e)

col 2 (row 1, b)

col 2 (row 2, c) col 3 (row 2, d)
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Matrix Transpose

Map:
– Input: <row i, (coli1, vali1), (col_i2, vali2), ... > 
– Output: <coli1, (row i, vali1)>
–              <coli2, (row i, vali2)>
–                             ....

Shuffle:
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a b
c d
e

col 1 (row 1, a)

col 2 (row 1, b)

col 2 (row 2, c)

col 3 (row 2, d)

col 2 (row 3, e)

col 1 (row 1, a)

col 2 (row 2, c) (row 1, b) (row 3, e)
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Matrix Transpose

Map:
– Input: <row i, (coli1, vali1), (col_i2, vali2), ... > 
– Output: <coli1, (row i, vali1)>
–              <coli2, (row i, vali2)>
–                             ....

Shuffle
Reduce:
– Sort by row number

21

a b
c d
e

col 1 (row 1, a)

col 2 (row 2, c) (row 1, b) (row 3, e)

col 3 (row 2, d)

col 1 (row 1, a)

col 2 (row 1, b) (row 2, c) (row 3, e)

col 3 (row 2, d)
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Matrix Transpose

Given a sparse matrix in row major order
Output same matrix in column major order
Given:

Output:
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row 1 (col 1, a) (col 2, b)

row 2 (col 2, c) (col 3, d)

row 3 (col 2, e)

a b
c d
e

col 1 (row 1, a)

col 2 (row 1, b) (row 2, c) (row 3, e)

col 3 (row 2, d)
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MapReduce Implications

Operations: 
– Map: <Key, Value> → List(<Key, Value>)

• Can be executed in parallel for each pair. 

– Shuffle: Aggregate all pairs with the same Key
• Synchronization step

– Reduce: <Key, List(Value)> → <Key, List(Value)>
• Can be executed in parallel for each Key

23
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MapReduce Implications

Operations: 
– Map: <Key, Value> → List(<Key, Value>)

• Can be executed in parallel for each pair
• Provided by the programmer

– Shuffle: Aggregate all pairs with the same Key
• Synchronization step
• Handled by the system

– Reduce: <Key, List(Value)> → <Key, List(Value)>
• Can be executed in parallel for each Key
• Provided by the programmer

The system also:
– Makes sure the data is local to the machine
– Monitors and restarts the jobs as necessary

24
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MapReduce Implications

Operations: 
– Map: <Key, Value> → List(<Key, Value>)

• Can be executed in parallel for each pair
• Provided by the programmer

– Shuffle: Aggregate all pairs with the same Key
• Synchronization step
• Handled by the system

– Reduce: <Key, List(Value)> → <Key, List(Value)>
• Can be executed in parallel for each Key
• Provided by the programmer

High Level view: MapReduce is about locality 
– Map: Assign data to different machines to ensure locality 
– Reduce: Sequential computation on local data blocks 

25
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Trying MapReduce 

Hadoop:
– Open source version of MapReduce
– Can run locally 

Amazon Web Services
– Upload datasets, run jobs
– Run jobs ... (Careful: pricing round to nearest hour, so debug first!) 

26
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Outline

1. What is MapReduce?
2. Modeling MapReduce
3. Dealing with Data Skew

27
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Modeling MapReduce

28
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Modeling MapReduce
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Modeling MapReduce
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MapReduce vs. Data Streams

31

Batch Online
Input

RAM Data Streams

Saturday, August 25, 12



MR Algorithmics Sergei Vassilvitskii

MapReduce vs. Data Streams
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The World of MapReduce

33
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The World of MapReduce

Practice:
– Used very widely for big data analysis 
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Aside: Big Data
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Aside: Big Data

Small Data:
– Mb sized inputs
– Quadratic algorithms finish quickly 
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Aside: Big Data

Small Data:
– Mb sized inputs
– Quadratic algorithms finish quickly 

Medium Data:
– Gb sized inputs
– Aim for linear time algorithms
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Aside: Big Data

Small Data:
– Mb sized inputs
– Quadratic algorithms finish quickly 

Medium Data:
– Gb sized inputs
– Aim for linear time algorithms

Big Data:
– Tb+ sized inputs 
– Need parallel algorithms

34
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The World of MapReduce
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The World of MapReduce

Practice:
– Used very widely for big data analysis 
– Google, Yahoo!, Amazon, Facebook, LinkedIn, ...
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The World of MapReduce

Practice:
– Used very widely for big data analysis 
– Google, Yahoo!, Amazon, Facebook, LinkedIn, ...

Beyond Simple MR:
– Many similar implementations and abstractions on top of MR: Hadoop, 

Pig, Hive, Flume, Pregel, ... 
– Same computational model underneath
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The World of MapReduce

Practice:
– Used very widely for big data analysis 
– Google, Yahoo!, Amazon, Facebook, LinkedIn, ...

Beyond Simple MR:
– Many similar implementations and abstractions on top of MR: Hadoop, 

Pig, Hive, Flume, Pregel, ... 
– Same computational model underneath

Data Locality:
– Underscores the fact that data locality is crucial... 
– ....which sometimes leads to faster sequential algorithms !

35
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MapReduce: Overview

Multiple Processors:
– 10s to 10,000s processors

Sublinear Memory
– A few Gb of memory/machine, even for Tb+ datasets
– Unlike PRAMs: memory is not shared

Batch Processing
– Analysis of existing data 
– Extensions used for incremental updates, online algorithms

36
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Data Streams vs. MapReduce

Distributed Sum:
– Given a set of    numbers:                           , find 

37
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Data Streams vs. MapReduce

Distributed Sum:
– Given a set of    numbers:                           , find 

Stream:
– Maintain a partial sum 
– update with every element

38
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Data Streams vs. MapReduce

Distributed Sum:
– Given a set of    numbers:                           , find 

Stream:
– Maintain a partial sum 
– update with every element

MapReduce:
– Compute                                                      for              in Round 1  
– Round 2: add the       partial sums. 

39
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Modeling

For an input of size    :

40

n
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Modeling

For an input of size    :
Memory
– Cannot store the data in memory
– Insist on sublinear memory per machine:              for some  

41

✏ > 0

n

O(n1�✏)
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Modeling

For an input of size    :
Memory
– Cannot store the data in memory
– Insist on sublinear memory per machine:              for some  

Machines
– Machines in a cluster do not share memory
– Insist on sublinear number of machines:              for some 

42
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Modeling

For an input of size    :
Memory
– Cannot store the data in memory
– Insist on sublinear memory per machine:              for some  

Machines
– Machines in a cluster do not share memory
– Insist on sublinear number of machines:              for some 

Synchronization
– Computation proceeds in rounds 
– Count the number of rounds
– Aim for         rounds

43

✏ > 0
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Not Modeling

Communication:
– Very important, makes a big difference

44
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Not Modeling

Communication:
– Very important, makes a big difference 
– Order of magnitude improvements due to

• Move code to data (and not data to code) 
• Working with graphs: save graph structure locally between rounds
• Job scheduling (same rack / different racks, etc)

45
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Not Modeling

Communication:
– Very important, makes a big difference 
– Order of magnitude improvements due to

• Move code to data (and not data to code) 
• Working with graphs: save graph structure locally between rounds
• Job scheduling (same rack / different racks, etc)

– Bounded by          (total memory of the system) in the model
• Minimizing communication always a goal

46
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How Powerful is this Model?

Different Tradeoffs from PRAM:
– PRAM: LOTS of very simple cores, communication every round
– PRAM: Worry less about data locality 
– MR: Many real cores (Turing Machines), batch communication. 

47
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How Powerful is this Model?

Different Tradeoffs from PRAM:
– PRAM: LOTS of very simple cores, communication every round
– PRAM: Worry less about data locality 
– MR: Many real cores (Turing Machines), batch communication. 

Formally:
– Can simulate PRAM algorithms with MR
– In practice can use same idea without formal simulation
– One round of MR per round of PRAM:               rounds total
– Hard to break below             , need new ideas!

48
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How Powerful is this Model?

Different Tradeoffs from PRAM:
– PRAM: LOTS of very simple cores, communication every round
– PRAM: Worry less about data locality 
– MR: Many real cores (Turing Machines), batch communication. 

Formally:
– Can simulate PRAM algorithms with MR
– In practice can use same idea without formal simulation
– One round of MR per round of PRAM:               rounds total
– Hard to break below             , need new ideas!

Both Approaches:
– Synchronous: computation proceeds in rounds 
– Other abstractions (e.g. GraphLab are asynchronous)

49
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How Powerful is this Model?

Compared to Data Streams:
– Solving different problems (batch vs. online)
– But can use similar ideas (e.g. sketching)

50
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How Powerful is this Model?

Compared to Data Streams:
– Solving different problems (batch vs. online)
– But can use similar ideas (e.g. sketching)

Compared to BSP:
– Closest in spirit 
– Do not optimize parameters in algorithm design phase
– Most similar to the CGP: Coarse Grained Parallel approach

51
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Outline

1. What is MapReduce?
2. Modeling MapReduce
3. Dealing with Data Skew
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(Social) Graph Mining
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(Social) Graph Mining

Graphs:
– Web (directed, labeled edges)
– Friendship (undirected, potentially labeled edges)
– Follower (directed, unlabeled edges)
– ..

53
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(Social) Graph Mining

Graphs:
– Web (directed, labeled edges)
– Friendship (undirected, potentially labeled edges)
– Follower (directed, unlabeled edges)
– ..
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(Social) Graph Mining

Graphs:
– Web (directed, labeled edges)
– Friendship (undirected, potentially labeled edges)
– Follower (directed, unlabeled edges)
– ..

Questions:
– Identify tight-knit circles of friends (Today)
– Identify large communities (Tomorrow)

53
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Defining Tight Knit Circles
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Defining Tight Knit Circles

Looking for tight-knit circles:
– People whose friends are friends themselves 
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Defining Tight Knit Circles

Looking for tight-knit circles:
– People whose friends are friends themselves 

Why?
– Network Cohesion: Tightly knit communities foster more trust, social 

norms. [Coleman ’88, Portes ’88] 
– Structural Holes: Individuals benefit form bridging [Burt ’04, ’07]
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Clustering Coefficient

55

vs.
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Clustering Coefficient

56

Given an undirected graph
cc(v) = fraction of v’s neighbors who are neighbors themselves

vs.

cc (    ) = 0.1 cc (    ) = 0.5

G = (V,E)

=
|{(u, w) 2 E|u 2 �(v) ^ w 2 �(v)}|

�dv

2

� =

#�s incident on v
�dv

2

�
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How to Count Triangles

57
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 

58
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Triangles[v]=0

Saturday, August 25, 12



MR Algorithmics Sergei Vassilvitskii

How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 

Running time: 

61
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Big Data and Long Tails

What is the degree distribution ?

62
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Big Data and Long Tails

What is the degree distribution ?
Many natural graphs have a very skewed degree 
distribution:

63
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Big Data and Long Tails

What is the degree distribution ?
Many natural graphs have a very skewed degree 
distribution:
– Few nodes with extremely high degree 

– Many nodes with low degree 
–

64
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Big Data and Long Tails

What is the degree distribution ?
Many natural graphs have a very skewed degree 
distribution:
– Few nodes with extremely high degree 
– Many nodes with low degree 

– Fat tails: the low degree nodes (tails of the distribution) form the 
majority of the nodes. 
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Big Data and Long Tails

What is the degree distribution ?
Many natural graphs have a very skewed degree 
distribution:
– Few nodes with extremely high degree 
– Many nodes with low degree 

– Fat tails: the low degree nodes (tails of the distribution) form the 
majority of the nodes. 

– The graph has a low average degree, but that is a misleading statistic

66
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Power Law Hype
Is everything a power-law?
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Power Law Hype
Is everything a power-law?
– Mentions of “power law” on ArXiV  (circa 2011)
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Power Law Hype
Is everything a power-law?
– Mentions of “power law” on ArXiV  (circa 2011)
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 

Running time: 

In practice this is quadratic, as some vertex will have very high degree

70

X

v2V

d2
v
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Parallel Version

Parallelize the edge checking phase

71
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Parallel Version

Round 1: Generate all possible length 2 paths
– Map 1:  For each    send              to same reducer.  
– Reduce 1:  Input:                                                                                                                          

Output: all 2 paths                   where                                                              
(   ,   );          (   ,   );             (   ,   ); 

72

(v,�(v))v

h(v1, v2);ui v1, v2 2 �(u)
hv; �(v)i

Meaning:
A path from      to       through      
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Parallel Version

Round 1: Generate all possible length 2 paths
Round 2: Check if the triangle is complete
– Map 2: Send                  and                                                                     

to same machine. 
– Reduce 2: input:                                                                                                    

Output: if    part of the input, then: 

73

h(v1, v2);ui h(v1, v2); $i for (v1, v2) 2 E

h(v, w); u1, u2, . . . , uk, $?i
$

(   ,   ); , $ �!
(   ,   ); �!

+1/3 +1/3 +1/3(   ,       ); (   ,       ); (   ,       ); 

hv, 1/3i, hw, 1/3i, hu1, 1/3i, . . . , huk, 1/3i
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Parallel Version

Round 1: Generate all possible length 2 paths
Round 2: Check if the triangle is complete
Round 3: Sum all the counts

74
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Data skew

How much parallelization can we achieve? 
- Generate all the paths to check in parallel 
- The running time becomes 

75

max

v2V
d2

v
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Data skew

How much parallelization can we achieve? 
- Generate all the paths to check in parallel 
- The running time becomes 

Naive parallelization does not help with data skew
– It was the few high degree nodes that accounted for the running time

– Example. 3.2 Million followers, must generate 10 Trillion (1013) 
potential edges to check. 

– Even if generating 100M edges to check per second, 100K seconds ~ 
27 hours. 

76

max

v2V
d2

v
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“Just 5 more minutes”

Running the naive algorithm on LiveJournal Graph
– 80% of reducers done after 5 min
– 99% done after 35 min

77
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Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)
– Running time quadratic in the degree of the vertex
– Idea: Count each once, from the perspective of lowest degree vertex
– Does this heuristic work? 

78
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Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)
– Running time quadratic in the degree of the vertex
– Idea: Count each once, from the perspective of lowest degree vertex
– Does this heuristic work? 

Approach 2: Divide & Conquer
– Equally divide the graph between machines
– But any edge partition will be bound to miss triangles
– Divide into overlapping subgraphs, account for the overlap

79
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How to Count Triangles Better

Sequential Version [Schank ’07]:

foreach v in V 

   foreach u,w in Adjacency(v)

     if deg(u) > deg(v) && deg(w) > deg(v)

         if (u,w) in E

            Triangles[v]++ 

80
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Does it make a difference?

81
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Dealing with Skew

Why does it help? 
– Partition nodes into two groups: 

• Low: 
• High: 

– There are at most          high nodes
• Each produces paths to other high nodes:          paths per node
• Therefore they generate:                paths in total

82

L = {v : dv 
p

m}
H = {v : dv >

p
m}

2
p

m

O(m)
O(m3/2)
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Proof (cont.)

– Let     be the number of nodes of degree   . 
– Then the total number of two paths is:

83

ni i

p
mX

i=1

ni · i2
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Proof (cont.)

– Let     be the number of nodes of degree   . 
– Then the total number of two paths generated by Low nodes is:

84

ni i



p
mX

i=1

(ni · i) · i

p
mX

i=1

ni · i2
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Proof (cont.)

– Let     be the number of nodes of degree   . 
– Then the total number of two paths generated by Low nodes is:

85

ni i
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ni · i2

By Cauchy-Schwarz 
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Proof (cont.)

– Let     be the number of nodes of degree   . 
– Then the total number of two paths generated by Low nodes is:
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(ni · i)  2m
p

4m3/2 ·m3/2 Since:

= O(m3/2)
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Discussion

Why does it help? 
– The algorithm automatically load balances
– Every node generates at most            paths to check
– Hence the mappers take about the same time to finish
– Total work is               , which is optimal

Improvement Factor:
– Live Journal: 

• 5M nodes, 86M edges
• Number of 2 paths: 15B to 1.3B, ~12

– Twitter snapshot:
• 42M nodes, 2.4B edges
• Number of 2 paths: 250T to 300B
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O(m3/2)

O(m)
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Approach 2: Graph Split 

Partitioning the nodes:
- Previous algorithm shows one way to achieve better parallelization
- But what if even           is too much. Is it possible to divide input into 

smaller chunks? 

88

O(m)
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Approach 2: Graph Split 

Partitioning the nodes:
- Previous algorithm shows one way to achieve better parallelization
- But what if even           is too much. Is it possible to divide input into 

smaller chunks? 

Graph Split Algorithm:
– Partition vertices into     equal sized groups                      .
– Consider all possible triples                 and the induced subgraph:

– Compute the triangles on each         separately. 

89

O(m)

p V1, V2, . . . , Vp

(Vi, Vj , Vk)
Gijk = G [Vi [ Vj [ Vk]

Gijk
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Approach 2: Graph Split 

Some Triangles present in multiple subgraphs:

Can count exactly how many subgraphs each triangle will be in

90

Vi Vj

Vk

in 1 subgraph

in p-2 subgraphs

in ~p2 subgraphs

Saturday, August 25, 12



MR Algorithmics Sergei Vassilvitskii

Approach 2: Graph Split 

Analysis:
– Each subgraph has              edges in expectation. 
– Very balanced running times 

91

O(m/p2)
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Approach 2: Graph Split 

Analysis:
– Very balanced running times
–    controls memory needed per machine

92

p
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Approach 2: Graph Split 

Analysis:
– Very balanced running times
–    controls memory needed per machine
– Total work:                                         , independent of 
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p3 · O((m/p2)3/2) = O(m3/2) p

p
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Approach 2: Graph Split 

Analysis:
– Very balanced running times
–    controls memory needed per machine
– Total work:                                         , independent of 

94

Input too big: 
paging

Shuffle time 
increases with 
duplication

p3 · O((m/p2)3/2) = O(m3/2) p

p
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Beyond Triangles

Counting other subgraphs? 
– Count number of subgraphs  
– Partition vertices into    equal sized groups.
– Consider all possible combinations of         groups
– Correct for multiple counting of subgraphs

95

p V1, V2, . . . , Vp

H = (W,F )

|W |
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Data Skew 

Naive parallelism does not always work
– Must be aware of skew in the data

Too much parallelism may be detrimental:
– Breaks data locality 
– Need to find a sweet spot

96
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Overview:

MapReduce:
– Lots of machines
– Synchronous computation

Data:
– MADly big: must be distributed 
– Usually highly skewed 
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